
Symmetric Spin?

Dragan Bo�sna�cki1, Dennis Dams2, and Leszek Holenderski1

1 Dept. of Computing Sci., Eindhoven University of Technology

PO Box 513, 5600 MB Eindhoven, The Netherlands
2 Dept. of Electrical Eng., Eindhoven University of Technology

PO Box 513, 5600 MB Eindhoven, The Netherlands

fD.Bosnacki,D.Dams,L.Holenderskig@tue.nl

Abstract. We give a detailed description of SymmSpin, a symmetry-

reduction package for Spin. It o�ers four strategies for state-space reduc-

tion, based on the heuristic that we presented in [3], and a �fth mode

for reference. A series of new experiments is described, underlining the

e�ectiveness of the heuristic and demonstrating the generalisation of the

implementation to multiple scalar sets, multiple process families, as well

as almost the full Promela language.

1 Introduction

One way to combat the state explosion problem in model checking [5, 7] is to

exploit symmetries in a system description. In order to grasp the idea of sym-

metry reduction, consider a mutual exclusion protocol based on semaphores.

The (im)possibility for processes to enter their critical sections will be similar

regardless of their identities, since process identities (pids) play no role in the

semaphore mechanism. More formally, the system state remains behaviorally

equivalent under permutations of pids. During state-space exploration, when a

state is visited that is the same, up to a permutation of pids, as some state that

has already been visited, the search can be pruned. The notion of behavioral

equivalence used (bisimilarity, trace equivalence, sensitivity to deadlock, fair-

ness, etc.) and the class of permutations allowed (full, rotational, mirror, etc.)

may vary, leading to a spectrum of symmetry techniques.

The two main questions in practical applications of symmetry techniques are

how to �nd symmetries in a system description, and how to detect, during state-

space exploration, that two states are equivalent. To start with the �rst issue: as

in any other state-space reduction method based on behavioral equivalences, the

problem of deciding equivalence of states requires, in general, the construction

of the full state space. Doing this would obviously invalidate the approach, as

it is precisely what we are trying to avoid. Therefore, most approaches proceed

by listing su�cient conditions that can be statically checked on the system de-

scription. The second problem, of detecting equivalence of states, involves the

? This research has been supported by the VIRES project (Verifying Industrial Reac-

tive Systems, Esprit Long Term Research Project #23498).

search for a canonical state by permuting the values of certain, symmetric, data

structures. In [4] it was shown that this orbit problem is at least as hard as test-

ing for graph isomorphism, for which currently no polynomial algorithms are

known. Furthermore, this operation must be performed for every state encoun-

tered during the exploration. For these reasons, it is of great practical importance

to work around the orbit problem. In practice, heuristics for the graph isomor-

phism problem can be reused to obtain signi�cant speedups. In case these do not

work, one can revert to a suboptimal approach in which (not necessarily unique)

normalized states are stored and compared.

The use of symmetry has been studied in the context of various automated

veri�cation techniques. We mention here only a few papers that are most closely

related to our work, which is in the context of asynchronous systems. For a more

complete overview we refer to the bibliography of [19]. Emerson and Sistla have

applied the idea to CTL model checking in [9], with extensions to fairness in [12]

and [15]. In [10], Emerson and Treer extended the concepts to real-time logics,

while in [11] they considered systems that are almost symmetric. Clarke, Enders,

Filkorn, and Jha used symmetries in the context of symbolic model checking in

[4]. Emerson, Jha, and Peled, and more recently Godefroid, have studied the

combination of partial order and symmetry reductions, see [8, 14].

Our work draws upon the ideas of Ip and Dill [17{19]. They introduce, in the

protocol description language Mur', a new data type called scalarset by which

the user can point out (full) symmetries to the veri�cation tool. The values of

scalarsets are �nite in number, unordered, and allow only a restricted number

of operations, that do not break symmetry; any violations can be detected at

compile time.

Following up on the approach of Ip and Dill, we have presented in [3] a

new heuristic for �nding representatives of symmetry equivalence classes. In

Section 3, this heuristic and the four strategies based on it are summarised. This

is done by redeveloping them on the basis of a generalisation of the notion of

lexicographical ordering. By introducing partial weight functions, lexicographical

orderings are generalised to partial orderings that are not necessarily total, which

allows to uniformly capture both the canonical and the non-canonical strategies.

[3] also reports on a number of experiments obtained with a prototype im-

plementation on top of the Spin tool. Based on the results of those experiments,

it was deemed worthwhile to extend the implementation so as to provide a more

complete integration into Spin. Presently, this extension has been carried out.

Compared to the prototype implementation, the current symmetry package has

been generalised in a number of essential directions. The main improvements are

its capabilities to handle queues, multiple scalar sets, as well as multiple process

families. One of the current paper's contributions is to describe the overall imple-

mentation in the context of Spin (Section 4). Having implemented this symmetry

package, we were also able to run more and larger experiments. The results of

these, and their evaluation, form the second main contribution of this paper

(Section 5). In the sequel we assume that we are dealing with safety properties

(see also Section 6).

2 Preliminaries

A transition system is a tuple T = (S; s0;!) where S is a set of states, s0 2 S
is an initial state, and ! � S � S is a transition relation. We assume that S
contains an error state e 6= s0 which is a sink state (whenever e! s then s = e).

An equivalence relation on S, say �, is called a congruence on T i� for all

s1; s2; s
0

1 2 S such that s1 � s2 and s1 ! s
0

1, there exists s02 2 S such that

s
0

1 � s
0

2 and s2 ! s
0

2. Any congruence on T induces a quotient transition system

T=� = (S=�; [s0];)) such that [s]) [s0] i� s! s
0.

A bijection h : S ! S is said to be a symmetry of T i� h(s0) = s0, h(e) = e,

and for any s; s
0 2 S, s ! s

0 i� h(s) ! h(s0). The set of all symmetries of T

forms a group (with function composition).

Any set A of symmetries generates a subgroup G(A) called a symmetry group

(induced by A). G(A) induces an equivalence relation �A on states, de�ned as

s �A s
0 i� h(s) = s

0

; for some h 2 G(A)

Such an equivalence relation is called a symmetry relation of T (induced by A).

The equivalence class of s is called the orbit of s, and is denoted by [s]A.

Any symmetry relation of T is a congruence on T (Theorem 1 in [18]), and

thus induces the quotient transition system T=�A. Moreover, s is reachable from

s0 if and only if [s]A is reachable from [s0]A (Theorem 2 in [18]). This allows to

reduce the veri�cation of safety properties of T to the reachability of the error

state [e] in T=�A (via observers, for example).

In order to extend an enumerative model checker to handle symmetries, i.e.,

to explore T=�A instead of T , a practical representation for equivalence classes

is needed. A common approach is to use a representative function, which is a

function rep : S ! S that, given a state s, returns an equivalent state from

[s]A. For an equivalence class C, the states in frep(s) j s 2 Cg are called the

representatives of C. Clearly, if rep(s) = rep(t) then states s and t are equivalent.

The reverse does not hold in general, but the smaller the set of all representatives

of a class, the more often it will hold. The two extremes are rep = id (the

identity function), which can obviously be implemented very e�ciently but will

never succeed to detect the equivalence of two di�erent states (\high speed, low

precision"); and � s 2 S: c[s] which returns for any input s a canonical state c[s]
that is the unique representative for the class [s]. Such a canonical representative

function will detect all equivalences but is harder to compute (\low speed, high

precision"). Now, one can explore T=�A by simply exploring a part of T , using

rep(s) instead of s. A generic algorithm of this type is given in Section 4. In the

sequel, by a reduction strategy we mean any concrete rep.

The de�nition of the representatives is usually based on some partial ordering

on states, e.g. by taking as representatives those states that are minimal in a

class, relative to the ordering. If the ordering is total, then the representatives

are unique for their class.

In practice, a transition system is given implicitly as a program, whose possi-

ble behaviours it models. In order to simplify the detection of symmetries on the

level of the program, we assume that a simple type can be marked as scalarset,

which essentially means that it is considered to be an unordered, �nite enumer-

ated type, with elements called scalars. As a representation for scalars, we use

integers from 0 to n� 1, for some �xed n. Syntactical criteria can be identi�ed

under which scalarsets induce symmetries on the program's transition system,

see [18]. In this presentation, we usually restrict ourselves to one scalarset which

is then denoted I . Our implementation is able to deal with multiple scalarsets

however.

3 Reduction Strategies

We start with a summary of the strategies from [3].

In the approach of [17], the de�nition of representatives is based on a lex-

icographic ordering on state vectors. Normally this is a total ordering, but by

de�ning it relative to a splitting of the state vector in two parts, a hierarchy of

non-total orderings is obtained, parameterized by the point at which the vec-

tor is split. More precisely, the representatives of a class are those state vectors

whose leftmost part (relative to the splitting) is the lexicographical minimum

among the leftmost parts of all the vectors in that class. The trade-o� between

speed and precision may now be tuned by varying the split point. This is a

degree of freedom that allows to explore a variety of representative functions,

including the two extremes id (split point at the beginning of the state vector)

and � s 2 S: c[s] (split point at the end) mentioned in the previous section.

We generalise this approach. Recall that a lexicographic ordering is an order-

ing on sequences of elements, and it is based on an underlying ordering on the

type of the elements. Normally, in lifting this underlying ordering to sequences,

\weights" are attached to all positions in the sequence, where the weight in-

creases as the position is further to the left1 (therefore ab would precede ba in a

dictionary). Splitting the state vector and letting only the leftmost part deter-

mine the lexicographic value, as done in [17], may be seen as assigning weights

only to the leftmost k positions, for some k. In other words, the weight function

from positions to weights becomes partial. We generalise this further by drop-

ping the requirement that weights increase as positions are further to the left.

Hence, we consider lexicographic orderings that are parameterized by arbitrary

partial weight functions. Viewed di�erently, such a weight function not only

truncates the state vector (as in [17]), but also reshu�es it, before computing

the lexicographic value in the standard way. Thus, we have extended the freedom

in selecting a representative function. In order to explain how this freedom is

exploited, we �rst look into the way the equivalence on states is de�ned in our

particular case.

Symmetry relations between states are generated by permuting scalars. A

given scalar permutation p : I ! I can be lifted to states. The precise de�nition

1 Note that it is only the relative weight of an element w.r.t. other elements in the

sequence that counts, not its absolute value.

of this lifting can be found in [3]. Intuitively, the application of a scalar per-

mutation p to a state vector s replaces every scalar i that occurs in s by p(i).

Because scalars may also occur as indices of arrays, array values may have to

be reshu�ed in order to get a proper state vector again. An equivalence class

is a minimal non-empty set of states that is closed under applying scalar per-

mutations. The representatives of such a class are those states that are minimal

under some given (generalised) lexicographic ordering. These representatives are

the states that are actually stored as the exploration of the transition system

proceeds.

First, we explain how to choose a lexicographic ordering so as to further

optimise on the speed, i.e. the computational e�ort in mapping a state s to its

representative rep(s). Assume that the program uses an array indexed by scalars

and whose elements do not involve scalars; we call this a main array. Then take

such an array, sayM , and choose the partial weight function that assigns weights

only to the elements ofM (and to nothing else in the state vector), with weights

decreasing from the �rst element M [0] to the last M [n � 1]. Now observe that

under the lexicographic ordering based on this partial weight function, in all

representatives (in any equivalence class), M is sorted. This gives rise to the

following idea in order to compute a representative rep(s): Instead of applying

di�erent scalar permutations to s until a minimal state vector is found, sort

M in s. Depending on the particular sorting algorithm used, this gives rise to a

certain scalar permutation, that is then applied to the rest of s in order to obtain

a representative. As an example, consider the following picture showing a state

vector before and after sorting a main array M , where M has been depicted at

the beginning of the state vector to stress the fact that its elements have the

highest lexicographic weight.

M[0]

2

8

2 7

2

7

7

8

sorting M

2

induces a
pid permu-
tation p

M[1]M[2]M[3]M[4]

rest of the state vector

\p(rest of the state vector)"

7

M is indexed by scalars, which in this case range from 0 to 4. M 's elements are

the numbers 2, 7, and 8, taken from some type that di�ers from I . Suppose that

the particular sorting algorithm being used sorts M as indicated by the dashed

arrows. This particular sorting induces the scalar permutation p = f0 7! 0; 3 7!
1; 2 7! 2; 4 7! 3; 1 7! 4g, which is then applied to the rest of the state vector.

This is called the sorted strategy. Note that it is not canonical.

Another strategy presented in [3] is based on the sorted strategy, and trades

some speed for precision. It is called the segmented strategy. Instead of sorting

M in one particular way, it considers all sortings of M . To continue with the

example, observe that there are 3 more ways to sort M , depending on how the

two 2's and the two 7's are moved around. An example of a corresponding scalar

permutation is p0 = f3 7! 0; 0 7! 1; 4 7! 2; 2 7! 3; 1 7! 4g. Furthermore, the

segmented strategy is based on a lexicographic ordering which, just as sorted,

gives the highest weights to M 's elements, but in addition it assigns weights

to all other elements in the state vector as well, i.e., it is a total function. The

segmented strategy considers the results of applying the scalar permutations

corresponding to all ways to sort M , and selects the lexicographically smallest

among these. Clearly, this results in canonical representatives2.

The assumption of an explicit array M can be dropped if the program con-

tains a family C0; : : : ; Cn�1 of processes C = � i : I :Ci parameterized by scalars.

In every such program there is, in fact, an implicit array indexed by scalars,

namely the array of program counters for processes Ci. Thus, we can consider

the variants of sorted and segmented in which we use the array of program coun-

ters for M . These variants are called pc-sorted and pc-segmented, respectively,

the latter one being canonical again.

Finally, full is the (canonical) strategy that generates all scalar permutations

and applies each of them to the state s, selecting the (standard) lexicographic

minimum as representative. It is used for reference purposes.

4 Extending Spin with Symmetry Reductions

The result of our extension of Spin with a symmetry package is called SymmSpin.

When extending an existing enumerative model checker, in the spirit of [18], two

essential problems have to be solved. First, the input language must be extended,

to allow the usage of scalarsets in a program that speci�es a model. Second,

a symmetry reduction strategy must be added to the state space exploration

algorithm. Both problems are non-trivial. As far as the extension of the input

language is concerned, a compiler should be able to check whether the scalarsets

really induce a symmetry relation (i.e., whether a program does not rely on the

order of the range of integers that represents a scalarset). As far as adding a

reduction strategy is concerned, the rep function should be implementable in an

e�cient way.

In order for a model checker to be a successful tool for the veri�cation of

symmetric systems, good solutions are needed for both problems. However, there

does not seem to be much sense in putting an e�ort into solving the language

extension problem without having an e�cient reduction strategy. That is why

in SymmSpin we have mainly concentrated on the second problem.

As far as the �rst problem is concerned, it could be solved just by lifting the

syntactical extensions of Mur' [18] to Spin. Although not entirely straightfor-

ward, it should not pose fundamental di�culties. Unfortunately, to do it in the

right way, one would need to extensively modify the existing Promela parser. In

SymmSpin, we have tried to avoid this e�ort, as explained in Section 4.3.

2 In [3], we prove a more general result stating that for canonicity it is not necessary

to extend the partial weight function of the sorted strategy to a full function, but

that an arbitrary choice function can be used.

4.1 A Modi�ed State Space Exploration Algorithm

In principle, extending an existing enumerative model checker to handle sym-

metries is not di�cult, once the rep function is implemented. Instead of using a

standard algorithm for exploring T = (S; s0;!), as depicted in Fig. 1, one ex-

plores the quotient T=� using a simple modi�cation of the algorithm, as depicted

in Fig. 2 (this modi�cation is borrowed from [18]).

reached := unexpanded := fs0g;

while unexpanded 6= � do

remove a state s from unexpanded;

for each transition s! s
0 do

if s0 = error then

stop and report error;

if s0
62 reached then

add s
0 to reached and unexpanded;

Fig. 1. A standard exploration algorithm

reached := unexpanded := frep(s0)g;

while unexpanded 6= � do

remove a state s from unexpanded;

for each transition s! s
0 do

if s0 = error then

stop and report error;

if rep(s0) 62 reached then

add rep(s0) to reached and unexpanded;

Fig. 2. A standard exploration algorithm with symmetry reductions

In practice, we had to overcome several problems, due to idiosyncrasies of

Spin. For example, it turned out that the operation \add rep(s0) to unexpanded "

is di�cult to implement reliably, due to the particular way Spin represents the set

unexpanded as a set of \di�erences" between states rather than states themselves.

For this reason, we had to change the exploration algorithm given in Fig. 2. In

our3 algorithm, the original states, and not their representatives, are used to

generate the state space to be explored, as depicted in Fig. 3.

Obviously, our algorithm is still sound. Beside avoiding the problem with

\add rep(s0) to unexpanded ", it has yet another advantage over the algorithm in

Fig. 2: it allows to easily regenerate an erroneous trace from the set unexpanded,

in case an error is encountered. Since Spin explores the state space in a depth

�rst manner, the set unexpanded is in fact structured as a stack. When an error

is encountered the stack contains the sequence of states that lead to the error,

3 We acknowledge a remark from Gerard Holzmann which led us to this algorithm.

reached := frep(s0)g; unexpanded := fs0g;

while unexpanded 6= � do

remove a state s from unexpanded;

for each transition s! s
0 do

if s0 = error then

stop and report error;

if rep(s0) 62 reached then

add rep(s0) to reached and s
0 to unexpanded;

Fig. 3. A modi�ed exploration algorithm with symmetry reductions

and its contents can directly be dumped as the erroneous trace. In the algorithm

from Fig. 2, the stack would contain the representatives of the original states,

and since the representatives are not necessarily related by the transition relation

in the original model, the stack would not necessarily represent an existing trace

in the original model.

Notice that although both algorithms explore the same state space (since

they agree on the reached set), there could still be a di�erence in their execution

times, if the numbers of successor states s
0 considered in the loop \for each

transition s ! s
0 do" were di�erent. It can easily be proven that this is not

a case. Whenever the algorithm in Fig. 3 computes the successors of s, the

algorithm in Fig. 2 computes the successors of rep(s). Since s and rep(s) are

related by a symmetry, they must have the same number of successors (recall

that any symmetry is a bijection).

4.2 An Overview of SymmSpin

Our goal was �rst to experiment with various reduction strategies, to check

whether they perform well enough to undertake the e�ort of fully extending

Spin with a symmetry package (such as modifying the Promela parser). So the

problem was how to extend Spin in a minimal way that would be su�cient to

perform various veri�cation experiments with some symmetric protocols. In fact,

we have managed to �nd a way which does not demand any change to the Spin

tool itself, but only to the C program generated by Spin.

The C program generated by Spin is kept in several �les. Two of them are

of particular interest to us: pan.c that implements a state exploration algo-

rithm, and pan.h that contains the declarations of various data structures used

in pan.c, including a C structure called State that represents a state of the

transition system being veri�ed. Our current extension of Spin with symmetry

reductions simply adds a particular reduction strategy to pan.c. This is done in

two steps.

First, we locate in pan.c all calls to the procedures that add a newly vis-

ited state to the set of already visited states. The calls have the generic form

store(now) where now is a global variable that keeps the current state. All the

calls are changed to store(rep(now)) where rep is the name of a C function

that implements the reduction strategy. In this way, the representatives, and not

the states themselves, are stored in the set of already visited states. The pan.c

code that computes the successor states of now is left unchanged. As a conse-

quence, the original states, and not their representatives, are used to generate

the state space to be explored. This agrees with the exploration algorithm in

Fig. 3.

Second, the C code for rep is generated and added to pan.c. This step is not

straightforward since we have to scan pan.h for various pieces of information

needed for the implementation of rep.

The two steps are performed by a Tcl script called AdjustPan [1]. The current

version of the script is about 1800 lines, not counting comments.

4.3 The AdjustPan Script

Conceptually, the symmetry relation is deduced from a Promela program, say

foo.pml, that uses special types called scalarsets which are unordered ranges of

integers (in SymmSpin, always of the form 0::n� 1, for some constant n < 256).

Actually, in order to avoid modi�cations to the Promela parser, there is no

special declaration for scalarsets. Instead, the standard Promela type byte is

used for this purpose. Also, the symmetry relation is not deduced from foo.pml

itself. Instead, it is deduced from an additional �le, say foo.sym, that must

accompany the Promela program. The additional �le (later called a system de-

scription �le) must be prepared by a user, and must contain all information

relevant to the usage of scalarsets in the original Promela program that speci�es

a symmetric concurrent system.

The precise description of the syntax of the system description �le, and its

meaning, is beyond the scope of this paper. In short, it resembles the declaration

part of Promela, and allows to describe all the data structures and processes,

appearing in the original Promela program, that depend on scalarsets. This

description is then used by the rep function to locate all fragments of the Spin

state vector that depend on a particular scalarset, and lift a permutation of the

scalarset to the state.

The only important restriction in the current version of SymmSpin is that

the concurrent system speci�ed by a symmetric Promela program must be

static, in the sense that all the processes must be started simultaneously, by

the initfatomicf...gg statement.

The AdjustPan script is called with two parameters: the name of one of

the 5 reduction strategies described in Section 3, and the name of a system

description �le. The script reads three �les: pan.h, pan.c (both generated by

Spin from foo.pml), and foo.sym. The information in foo.sym and pan.h is

used to modify pan.c. The modi�ed version of pan.c is stored under the name

pan-sym.c, and is used to model check the symmetric Promela program.

In summary, SymmSpin is used in the following way:

{ Write a symmetric Promela program, say foo.pml, and its system descrip-

tion �le, say foo.sym.

{ Run Spin (with the -a option) on foo.pml (this will generate pan.h and

pan.c �les).

{ Run AdjustPan on foo.sym with a particular reduction strategy (this will

generate pan-sym.c �le).

{ Compile pan-sym.c with the same options you would use for pan.c, and run

the generated binaries to model check the symmetric Promela program.

4.4 The Implementation of Strategies

In this section we highlight some implementation details of SymmSpin, to give

an idea of how the rep function is implemented in an e�cient way. To simplify

presentation, we assume that only one scalarset is used in a Promela program.

The canonical strategies full, segmented and pc-segmented are implemented

by a C function of the following shape:

State tmp_now, min_now;

State *rep(State *orig_now) {

/* initialize */

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

memcpy(&min_now, &tmp_now, vsize);

...

return &min_now;

}

The parameter orig now is used to pass the current state now. In order to

avoid any interference with the original code in pan.c that uses now for its own

purposes (for example, to generate the succesor states of the current state), we

must assure that rep does not modify now. For this reason, we copy orig now

to the auxiliary state tmp now.

The representative is found by enumerating permutations of a scalarset, and

applying them to (the copy of) the current state. The lexicographically smallest

result is kept in min now. After each permutation, it is updated by the following

statement

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

In strategies sorted and pc-sorted, only one permutation is considered, so the

auxiliary state min now is not needed. Hence, the strategies are implemented by

a function of the following shape:

State tmp_now;

State *rep(State *orig_now) {

/* initialize */

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

...

return &tmp_now;

}

In the rest of this section, we present the rep functions for the full, sorted

and segmented strategies. The pc-sorted and pc-segmented strategies are similar

to the sorted and segmented strategies.

Strategy full

State tmp_now, min_now;

State *rep_full(State *orig_now) {

memcpy(&tmp_now, orig_now, vsize);

/* find the representative */

memcpy(&min_now, &tmp_now, vsize);

permute_scalar(SIZE_OF_SCALAR);

return &min_now;

}

The representative is found by the permute scalar procedure that takes the

size of a scalarset, say size , and generates all permutations of numbers from 0 to

size � 1, excluding the identity permutation. Each permutation is then applied

to the current state. Applying a permutation may be quite expensive. It can be

implemented more e�ciently if a permutation is a transposition (i.e, a swap of

two numbers). For this reason, the permutations are generated incrementally, by

composing successive transpositions (starting from the identity permutation). A

tricky algorithm (borrowed from [20], and presented in Fig. 4) is used for this

purpose.

It happens that the transpositions generated by the algorithm always swap

two succesive elements p and p + 1, but we do not rely on this feature. When-

ever a new transposition is computed, permute scalar calls apply swap. The

apply swap procedure has the following header:

void apply_swap(State *state, int v1, int v2)

It lifts the transposition of scalar values v1 and v2 to a given state. The lifting

is performed in situ, by modifying the given state. The body of apply swap is

generated by AdjustPan, using the information given in a system description �le.

The generated C code is straightforward. It consists of a sequence of guarded

assignments that swap v1 with v2, for each variable that depends on a scalarset.

For example, if x is a global variable of a scalarset type then the following

code fragment is generated:

if (state->x == v1) state->x = v2; else

if (state->x == v2) state->x = v1;

For arrays, the code is more complex. For example, if x is a global array

of a scalarset type, and indexed by the same scalarset, then the following code

fragment is generated:

/* swap values */

for (i = 0; i < SCALAR_SIZE; i++) {

if (state->x[i] == v1) state->x[i] = v2; else

if (state->x[i] == v2) state->x[i] = v1;

}

/* swap indices */

{ uchar tmp; tmp = x[v1]; x[v1] = x[v2]; x[v2] = tmp; }

In addition, for every family of processes indexed by a scalarset, say proctype

P(scalar i), apply swap swaps the two chunks of memory (in a state vector)

that correspond to P (v1) and P (v2).

Strategy sorted

State *rep_sorted(State *orig_now) {

int perm[MAX_SCALAR_SIZE];

memcpy(&tmp_now, orig_now, vsize);

/* sort the main array and compute the sorting permutation */

...

/* find the representative */

apply_perm(perm, &tmp_now);

return &tmp_now;

}

The main array is sorted using a straightforward algorithm that successively

�nds minimal elements. Its quadratic complexity is acceptable since the size of

a scalarset is usually small. On the other hand, it allows to compute the sorting

permutation with minimal cost, since each element is swapped only once.

The apply perm procedure has the following header:

void apply_perm(int *perm, State *state)

It lifts the given permutation of scalarset values to state. As in apply swap, the

lifting is performed in situ, and it consists of a sequence of guarded assignments,

for each variable that depends on a scalarset. For example, if x is a global variable

of a scalarset type then the following code fragment is generated:

if (state->x < SCALAR_SIZE) state->x = perm[state->x];

The guard is needed to solve a subtle problem with the initialization of

scalarset variables. Since all variables used in a standard Promela program are

automatically initialized with 0, it is common to use 0 to represent an unde�ned

value. Unfortunately, this convention cannot be used for scalarsets. The reason

is that in our implementation, a scalarset of size n is a range of integers from

0 to n � 1, so 0 must be treated as other well-de�ned values (otherwise, the

symmetry would be broken). Thus, a value outside of the range must be used

for an unde�ned value. By convention, we use n for this purpose, and the guard

guarantees that the unde�ned value is treated in a symmetric way (i.e., it is

never permuted, as required in [18]). In fact, any value not less than n can be

used to represent the unde�ned value.

For arrays, the code is more complex. For example, if x is a global array

of a scalarset type, and indexed by the same scalarset, then the following code

fragment is generated:

/* permute values */

for (i = 0; i < SCALAR_SIZE; i++) {

if (state->x[i] < SCALAR_SIZE) state->x[i] = perm[state->x[i]];

}

/* permute indices */

{ uchar buf[SCALAR_SIZE];

memcpy(buf, state->x, sizeof(state->x));

for (i = 0; i < SCALAR_SIZE; i++) state->x[perm[i]] = buf[i];

}

Notice that when permuting indices we have to use a bu�er.

Strategy segmented

State *rep_segmented(State *orig_now) {

int perm[MAX_SCALAR_SIZE];

memcpy(&tmp_now, orig_now, vsize);

/* sort the main array and compute the sorting permutation */

...

/* locate blocks */

...

/* find the representative */

apply_perm(perm, &tmp_now);

memcpy(&min_now, &tmp_now, vsize);

if (num_of_blocks > 0)

permute_blocks(0, block_start[0], block_size[0]);

return &min_now;

}

First, the main array is sorted as in the sorted strategy. Second, the segments

of equal values are located, in the sorted main array, by a straightforward linear

algorithm. The information about the segments (called blocks henceforth) is

stored in the following global data structures:

int num_of_blocks;

int block_start[MAX_SCALAR_SIZE], block_size[MAX_SCALAR_SIZE];

Finally, the canonical representative is found by procedure permute blocks

that generates all permutations of indices in successive blocks, excluding the

identity permutation. Its code is given in Fig. 5. Each permutation is then applied

to the current state, and the lexicographically smallest result is chosen.

The procedure uses double recursion, to assure that the number of calls to

apply swap and comparisons between tmp now and min now is minimal. It is a

generalization of permute scalar used in rep full. Conceptually, the indices

of separate blocks, when considered relative to the start of a respective block,

can be perceived as separate scalarsets. Inside one block, all transpositions of

the block's indices are generated as in permute scalar. The double recursion is

used to properly compose the permutations of separate blocks, by chaining the

invocations of permute blocks.

5 Experimental Results

We tried our implementation on several examples, like Peterson's mutual exclu-

sion algorithm [21], or Data Base Manager from [23] (see also [3] for more details

about these and other examples.) The obtained reduction were often very close

to the theoretical limits, thus, we were able to obtain reductions of several or-

ders of magnitude in the number of states. Also, due to the signi�cantly smaller

number of states that had to be explored, in all the cases the veri�cation with

symmetry reduction was faster than the one without it.

The experiments showed that in general there is no favorite among the re-

duction strategies regarding the space/time ratio. This justi�es our decision to

have all strategies (maybe except full) as separate options of the extended model-

checker.

In the veri�cation experiments we used Spin both with and without the par-

tial order reduction (POR) option. Allowing Spin to use its POR algorithm

together with our symmetry reductions is sound due to Theorem 19 in [8] which

guarantees that the class of POR algorithms to which the Spin's POR algorithm

belongs, is compatible with the generic symmetry reduction algorithm. With

a straightforward modi�cation, the theorem's proof is valid for our algorithm

as well. In most of the cases there was a synergy between the symmetry and

the partial order reductions. The two reduction techniques are orthogonal be-

cause they exploit di�erent features of the concurrent systems, therefore, their

cumulative e�ect can be used to obtain more e�cient veri�cation.

In the sequel, we present the results for two examples. They were chosen so

as to test the capabilities to deal with queues, multiple scalar sets and multi-

ple process families. All experiments were performed on a Sun Ultra-Enterprise

machine, with three 248 MHz UltraSPARC-II processors and 2304 MB of main

memory, running the SunOS 5.5.1 operating system. Veri�cation times are given

in seconds (s.x), minutes (m:s), or hours (h:m:s); the number of states is given di-

rectly or in millions (say, 9.1M); o.m. stands for out of memory, and o.t. denotes

out of time (more than 10 hours); +POR and -POR mean with and without

POR, respectively.

The Initialization Protocol. Assume that we are given a system of n pro-

cesses each consisting of an initial part and a main part. The data structures

can have arbitrary initial values. The role of the Initialization Protocol from [13]

is to synchronize the processes such that none of them can enter its main part

before all the others have �nished their initial parts.4 Process synchronization

4 Note that this would be trivial if we could assume that the variables' initial values

were known.

is done via shared boolean variables. Each process has so called co-component

process whose task is to manage the synchronization of the boolean variables.

We refer the reader to [13] for more details.

The protocol is an example of a system with one scalar variable and two

process families indexed by this scalar { the family of processes that are syn-

chronized and the family of their co-components. In such a case one can expect

the same maximal amount of reduction of n! (where n is the family size) as with

one family.

Table 1. Results for the Initialization Protocol example.

n 2 3 4 5

+PO -PO +PO -PO +PO -PO +PO -PO

no states 2578 2578 131484 131484 7.0M 7.0M o.m. o.m.

symm. time 6.4 1.1 19.3 12.2 18:50 16:31 | |

states 1520 1521 26389 26399 386457 386536 5.3M o.m.

full time 6.2 1.0 11.4 6.0 4:53 4:46 5:38:05 |

seg. time 6.3 1.0 11.1 5.4 3:19 3:04 2:28:20 |

pc-seg. time 6.3 0.9 10.1 4.4 1:54 1:39 47:03 |

sorted states 2344 2344 98602 98602 4.2M 4.2M o.m. o.m.

time 6.3 1.0 17.9 11.0 12:13 12:22 | |

pc- states 1607 1607 40395 40395 987830 987830 o.m. o.m.

sorted time 6.3 0.1 11.8 5.7 3:55 3:17 | |

We veri�ed the correctness of the algorithm for several values of n by placing

before the main part of each process an assertion which checks that all the other

processes have terminated their initial parts.

Because of the intensive use of global variables, partial order reduction had

almost no e�ect in this example. Thus, the state space reduction was mostly due

to the symmetry. The canonical heuristic segmented and pc-segmented prevailed

over the non-canonical ones regarding both space and time. Compared to full,

they were signi�cantly faster for larger values of n. Better performance of pc-

segmented and pc-sorted over segmented and sorted respectively, can be explained

by the fact that the main array that was used in the latter strategies is of boolean

type. This means that the elements of the main array can have only two values,

in contrast with the program counter which ranges over at least 15 di�erent

values. Intuitively, the greater versatility of values in the pc array means that

fewer permutations have to be generated on average in order to canonicalize the

state.

Base Station. This example is a simpli�ed version of MASCARA { a telecom-

munication protocol developed by the WAND (Wireless ATM Network Demon-

strator) consortium [6]. The protocol provides an extension of the ATM (Asyn-

chronous Transfer Mode) networking protocol to wireless networks. Our model

represents a wireless network connecting ns � 1 sending mobile stations and

nr � 1 receiving mobile stations that may communicate with each other using

a limited number (m � 1) of radio channels provided by one base station BS.

More speci�cally, when sender station A wants to send a message to receiver

station B it must request a channel from BS. Provided there are channels avail-

able, A is granted one, call it c. If B wants to receive messages, it queries BS.

As there is a pending communication for B through c, BS assigns c to B. After

the communication has taken place, both A and B return the channel to BS.

The results given below are for checking for unreachable code, with m = 2 radio

channels.

Table 2. Results for the Base Station example.

ns = 2 ns = 3 ns = 2

nr = 2 nr = 2 nr = 3

+PO -PO +PO -PO +PO -PO

no states 4.6M 9.0M o.m. o.m. o.m. o.m.

symm. time 5:02 13:48 | | | |

states 1.2M 2.3M 9.0M o.m. 9.4M o.m.

full time 1:41 5:03 28:57 | 30:32 |

pc-seg. time 1:32 4:54 19:29 | 20:36 |

pc- states 1.7M 3.5M o.m. o.m. o.m. o.m.

sorted time 1:58 6:03 39:02 | | |

There are two families of symmetric processes in the model: The family of

sending stations and the family of receiving stations. Unlike in the Initialization

Protocol, the two families are independent, and, consequently, indexed with two

di�erent scalar sets.

On this example we could apply only pc-segmented and pc-sorted because

there was no main array that could be used for sorted and segmented. One

can see that for the canonical strategies the reduction indeed approaches the

theoretical limit ns! � nr!. (In general, for a system with k independent process

families indexed by k scalar sets, the reduction due to symmetry is limited by

n1! � n2! � : : : � nk!, where ni; 1 � i � k, is the number of processes in the i-th

family.)

A version of this protocol was analyzed in [3]. There, we had to rewrite the

original model such that all the communication was done via global variables.

For the experiments in this paper we were able to use the original model in

which the communication was modeled with Promela channels. As a result, the

contribution of the partial order reduction became visible. One can also notice

the already mentioned orthogonality of the two heuristics { namely, the factor

of reduction due to symmetry was almost the same with or without POR.

6 Conclusions and Future Work

We have presented SymmSpin, an extension of Spin with a symmetry-reduction

package. The package is based on the heuristic presented in [3]. It provides the 4

reduction strategies based on this heuristic (sorted/pc-sorted and segmented/pc-

segmented) as well as the full reduction strategy. Compared to the prototype

implementation that was used for the feasibility study reported in [3], the cur-

rent implementation covers a more general class of symmetric systems. Namely,

it is able to deal with multiple scalar sets and multiple process families. In ad-

dition, almost all Promela features are now handled, including queues. The only

remaining restrictions are that the elements of queues are as yet restricted to

simple, non-structured types, and that no dynamic process creation is allowed.

The resulting package has been described at a detailed level. For maximal

modularity, the implementation is in the form of a Tcl script that operates on

the veri�cation engine produced by Spin. We point the interested reader to the

web site accompanying this paper, [1], for the full source code.

This enhanced implementation enabled a more extensive series of experi-

ments, exploiting the additional symmetric structure in models and the richer

variety of Promela constructs handled. Two of the new experiments are reported

here. Naturally, also the experiments reported in [3] have been repeated and suc-

cessfully reproduced in the process of testing the new implementation.

The most natural next step would be to extend the Promela syntax to allow

speci�cations of scalarsets directly instead of via an accompanying �le. This will

facilitate the automatic veri�cation of the syntactic conditions along the lines

of [18], that are needed to ensure the soundness of the analysis. With the present

implementation this is still a task for the user. A more ambitious attempt would

be the automatic detection of scalarsets directly from the Promela sources.

On a theoretical level, the symmetry package is compatible with Spin's LTL

veri�cation algorithm combined with partial order reduction. What needs to be

veri�ed is that our arguments are also valid for the particular implementations

in Spin, more precisely, the cycle detection algorithm. Experience has taught us

that this kind of issues should be treated cautiously.

References

1. AdjustPan script, http://www.win.tue.nl/~lhol/SymmSpin, April 2000.
2. D. Bo�sna�cki, D. Dams, Integrating real time into Spin: a prototype implementation,

in S. Budkowski, A. Cavalli, E. Najm (eds), Proc. of FORTE/PSTV'98 (Formal

Description Techniques and Protocol Speci�cation, Testing and Veri�cation), 423{

438, Paris, France, Oct. 1998.
3. D. Bo�sna�cki, D. Dams, L. Holenderski, A Heuristic for Symmetry Reductions with

Scalarsets, submitted to FORTE'2000 (The 13th Int. Conf. on Formal Description

Techniques for Distributed Systems and Communication Protocols).

4. E.M. Clarke, R. Enders, T. Filkorn, S. Jha, Exploiting symmetry in temporal logic

model checking, Formal Methods in System Design, Vol. 19, 77{104, 1996.

5. E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press, 2000.

6. I. Dravapoulos, N. Pronios, S. Denazis et al, The Magic WAND, Deliverable 3D2,

Wireless ATM MAC, Sep 1997.

7. E.A. Emerson, Temporal and modal logic, in Jan van Leeuwen (ed.), Formal Models

and Semantic, Vol. B of Handbook of Theoretical Computer Science, Chap. 16, 995{

1072, Elsevier/The MIT Press, 1990.

8. E.A. Emerson, S. Jha, D. Peled, Combining partial order and symmetry reduc-

tions, in Ed Brinksma (ed.), Proc. of TACAS'97 (Tools and Algorithms for the

Construction and Analysis of Systems), LNCS 1217, 19{34, Springer, 1997.

9. E.A. Emerson, A.P. Sistla, Symmetry and model checking, in C. Courcou-

betis (ed.), Proc. of CAV'93 (Computer Aided Veri�cation), LNCS 697, 463{478,

Springer, 1993.

10. E.A. Emerson, R.J. Treer, Model checking real-time properties of symmetric

systems, Proc. of the 23rd International Symposium on Mathematical Foundations

of Computer Science (MFCS), 427{436, Aug. 1998.

11. E.A. Emerson, R.J. Treer, From asymmetry to full symmetry: new techniques

for symmetry reduction in model checking, Proc. of CHARME'99 (The 10th IFIP

WG10.5 Advanced Research Working Conference on Correct Hardware Design and

Veri�cation Methods), Bad Herrenalb, Germany, Sep. 1999.

12. E.A. Emerson, A.P. Sistla, Utilizing symmetry when model-checking under fair-

ness assumptions: an automata-theoretic approach, ACM Transactions on Pro-

gramming Languages and Systems, 19(4):617{638, July 1997.

13. W.H.J.Feijen, A.J.M. van Gasteren, On a method of multiprogramming, Springer-

Verlag, 1999

14. P. Godefroid, Exploiting symmetry when model-checking software, Proc. of

FORTE/PSTV'99 (Formal Methods for Protocol Engineering and Distributed Sys-

tems), 257{275, Beijing, Oct. 1999.

15. V. Gyuris, A.P. Sistla, On-the y model checking under fairness that exploits

symmetry, in O. Grumberg (ed.), Proc. of CAV'97 (Computer Aided Veri�cation),

LNCS 1254, 232{243, Springer, 1997.

16. G.J. Holzmann, Design and Validation of Communication Protocols, Prentice Hall,

1991. Also: http://netlib.bell-labs.com/netlib/spin/whatispin.html

17. C.N. Ip, D.L. Dill, Better veri�cation through symmetry, in D. Agnew, L. Clae-

sen, R. Camposano (eds), Proc. of the 1993 Conference on Computer Hardware

Description Languages and their Applications, Apr. 1993.

18. C.N. Ip, D.L. Dill, Better veri�cation through symmetry. Formal Methods in

System Design, Vol. 9, 41{75, 1996.

19. C.N. Ip, State Reduction Methods for Automatic Formal Veri�cation, PhD thesis,

Department of Computer Science of Stanford University, Dec 1996.

20. V. Lipskiy, Kombinatorika dlya programmistov, Mir, Moscow, 1988. (In Russian)

21. N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, 1996.

22. R. Nalumasu, G. Gopalakrishnan, Explicit-enumeration based Veri�cation made

Memory-e�cient, Proc. of CHDL'95 (Computer Hardware Description Languages),

617-622, Chiba, Japan, Aug. 1995.

23. A. Valmari, Stubborn sets for reduced state space generation, Advances in Petri

Nets 1990, LNCS 483, 491{515, Springer, 1991.

void permute_scalar(int size) {

int i, p, offset, pos[MAX_SCALAR_SIZE], dir[MAX_SCALAR_SIZE];

for (i = 0; i < size; i++) { pos[i] = 1; dir[i] = 1; }

pos[size-1] = 0;

i = 0;

while (i < size-1) {

for (i = offset = 0; pos[i] == size-i; i++) {

pos[i] = 1; dir[i] = !dir[i]; if (dir[i]) offset++;

}

if (i < size-1) {

p = offset-1 + (dir[i] ? pos[i] : size-i-pos[i]);

pos[i]++;

/* apply transposition p <-> p+1 */

apply_swap(&tmp_now, p, p+1);

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

}

}

}

Fig. 4. Generating permutations by transpositions

void permute_blocks(int block, int start, int size) {

int i, p, offset, pos[MAX_SCALAR_SIZE], dir[MAX_SCALAR_SIZE];

/* go to the last block */

if (++block < num_of_blocks)

permute_blocks(block, block_start[block], block_size[block]);

block--;

/* the same as permute_scalar, but apply transposition is changed to */

...

swap_in_block(block, p, p+1);

...

}

void swap_in_block(int block, int p1, int p2) {

/* apply transposition p1 <-> p2 */

apply_swap(&tmp_now, p1, p2);

if (memcmp(&tmp_now, &min_now, vsize) < 0)

memcpy(&min_now, &tmp_now, vsize);

/* permute the next block */

if (++block < num_of_blocks)

permute_blocks(block, block_start[block], block_size[block]);

}

Fig. 5. Permuting blocks

